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Abstract

The effect of person misfit to an item response theory (IRF) model on a mastery/non-

mastery decision was investigated. Furthermore, it was investigated whether the

classification precision can be improved by identifying misfitting respondents using

person-fit statistics. A simulation study was conducted to investigate the probability of

a correct classification using different estimation methods, person-fit statistics, model

violations, test lengths and sample sizes. In this simulation study, the effect of the presence

of misfitting item score patterns on the item parameter estimates was also taken into

account. Results showed that the effect of the presence of misfitting item score patterns on

the classification of non-aberrant simulees was in general small, that is, the classification

precision for these simulees hardly suffered. Further, for simulees classified as non-

aberrant using a person-fit statistic, the classification decisions were comparable with

a priori known non-aberrant simulees. The conclusion is that person-fit statistics can be

used for identifying a sub-sample of respondents where relatively precise mastery/non-

mastery decisions can be made. These results were comparable across different person-fit

statistics and estimation methods.

Key Words: IRT, 3PNO, Guessing, Item disclosure, Person-fit statistics, Estimation

methods
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Introduction

To determine the fit of an item score pattern to an item response theory (IRE

Lord, 1980; van der Linden & Hambleton, 1997) model, several fit statistics have been

proposed. Investigating the fit of an item score pattern to an IRT model may help the

researcher to obtain additional information about the response behavior of a person, which

may, for instance, be influenced by guessing, or preknowledge of the items. For an

overview of person-fit research, see Meijer and Sijtsma (2001). From this overview

it can be concluded that many person-fit studies have concentrated on the power of

person-fit methods to detect misfitting item score patterns. In simulation studies, the

percentage of correctly classified misfitting item score patterns is investigated given a

priori knowledge of some type of misfitting response behavior. A general conclusion

from these studies is that the power of the person-fit statistics is relatively low (Meijer

& Sijtsma, 2001). However, relatively low power of a person-fit statistic should be

interpreted in relation to the effect on the estimation of the latent trait 9 or the classification

of a person in a prespecified category (for example, when taking mastery/non-mastery

decisions). Therefore, knowledge about the effect of misfit of an item score pattern on the

classification is crucial for the use of person-fit in an applied setting. To know what type

of misfit has an effect on classification decisions may help the researcher to test against

specific types of aberrant behavior. In this paper, we will first investigate the robustness

of the classification decision under different types of misfit using different methods to

estimate O.

In realistic situations, it is unknown which respondents are aberrant. Therefore, it

must be expected that the item parameter estimates will be biased by the contamination

of the data. The impact of the presence of non-fitting response patterns on the outcome

of the person fit tests and on the classification decisions will be the second topic of the

investigation. More specifically, it will be investigated whether person-fit statistics can be

used for identifying a sub-sample of respondents where relatively precise mastery/non-

mastery decisions can be made.

5
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Three estimation methods for 0 will be used: a Maximum Likelihood Estimation

(MLE) method and two Bayesian methods. The first Bayesian method is based on an

Expected A Posterior (EAP) estimate of 0 given estimates of the item parameters, the

second Bayesian method is based on the complete posterior distribution of 0 and the

item parameters. The latter method has the advantage that both the uncertainty about

the person and the uncertainty about the item parameters are taken into account. The

computations for. the latter procedure are performed using a Markov Chain Monte Carlo

(MCMC) algorithm.

This paper is organized as follows. First, we will introduce the relevant IRT model

and some methods to estimate 0. Second, we will discuss person-fit statistics that are

often used in practice. Third, we will present the result of a simulation study in which we

investigate the effect of person misfit and the performance of person fit tests for different

levels of misfit, test lengths, sample sizes, estimation methods and test statistics.

IRT Model

In IRT, the probability of a correct response on item j (j = 1, 2, ..., k), Pi (0), is

a function of the latent trait value 0 and a number of item characteristics. Models that

are most often used are the one-, two-, and three-parameter logistic model (1-, 2-, and

3-PL; Hambleton and Swaminathan, 1985, pp. 35-48). In this study, however, we will

use the 3-parameter normal ogive (3PNO; Lord, 1980, pp. 13-14) model, because in

a Bayesian framework, the 3PNO model has some computational advantages over the

logistic models (see, for example, Albert, 1992). The 3PNO model and 3PL model

are completely equivalent for all practical purposes. In the 3PNO model, the item is

characterized by a difficulty parameter ,3j, a discrimination parameter a , and a (pseudo)

guessing probability 7j. The probability of correctly answering an item is given by

1 3 (0) 7 3 + (1 7 3) (13 (a 3) , (1)

6
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where (1. is the standard cumulative normal distribution. Since the 3PNO and 3PL models

predict nearly identical item response functions (IRFs), few differences in either model

fit or parameter estimates are expected (Embretson & Reise, 2000, pp. 78-79).

Methods for Estimating 9

MLE

In IRT, the probability of a correct response on an item depends on 0, and the

parameters that characterize the item. Both 0 and the item parameters are unknown.

Almost all person-fit studies have used the MLE method to estimate 0 (Meijer & Sijtsma,

1995). The MLE, estimator g is the value of 0 that maximizes the likelihood function for a

particular response pattern. It is usually assumed that the items fit the IRT model and that

the item parameters are known. Advantages of MLE is that 0 values tend to be consistent

and efficient (Hambleton & Swaminathan, 1985). The main disadvantages of MLE are

that g does not exist for a perfect item score pattern (all items correct) and pattern with all

items incorrect, and that 0 is biased, that is, it is overestimated for positive values of 0 and

underestimated for negative values of 0 (Lord, 1983; see Warm, 1989, for improvements).

Though it is assumed that the item parameters are known, in realistic situations they are

unknown and have to be estimated. In the simulation studies reported below, the item

parameters will be estimated using the a maximum marginal likelihood (MIVIL) procedure

implemented in BILOG -MG. For more information about MILE procedure for the normal

ogive model, refer to Baker (1992).

EAP

As Bayesian alternatives to MLE in person-fit research, Reise (1995) used EAP

estimation and Glas and Meijer (2001) used MCMC estimation. In EAP estimation, both

the response vector and information about the examinees are combined. The posterior

distribution is proportional to the product of the likelihood of the item score patterngiven

0 and a, usually, normal prior for 0. The EAP estimate is simply the mean of theposterior

7
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distribution. An advantage of EAP estimation is that the extra information obtained using

the prior can improve the estimation of 0, and unreasonable values ofB can be avoided.

This, of course, has the side effect that the resulting 0 will regress to the mean of the

prior (shrinkage). Also in EAP estimation, the item parameters are imputed as fixed

known constants. Below, values for these constants are estimated using the Bayes modal

procedure implemented in BILOG-MG (Mislevy & Bock, 1990).

MCMC

Whereas procedures for conventional frequentist statistical inference focus attention

on point estimates and their standard errors, Bayesian methods often seek to characterize

the posterior distribution of the parameters. This can done by an MCMC method, which

produces samples from the joint posterior density of model parameters that may be then

summarized to estimate 0 (Jackman, 2000). Because this technique is somewhat less well

known as MLE and EAP methods we will discuss it in more detail.

Below, the MCMC method used will be the Gibbs sampler (Geman & Geman,

1984, Gelfand & Smith, 1990): To implement the Gibbs sampler, the parameter vector

is divided into a number of components, and each successive component is sampled

from its conditional distribution given sampled values for all other components. This

sampling scheme is repeated until the sampled values form stable estimates of the

posterior distributions. Albert (1992) applies Gibbs sampling to estimate the parameters

of the well known 2PNO model; a generalization to the 3PNO model is given by Beguin

and Glas (in press). The latter generalization entails a data augmentation scheme defined

as follows. Let the binary variable Wij be defined as:

{
1 if person i knows the correct answer to item j

Wii 0 if person i doesn't know the correct answer to item j
(2)

The relation between Wi; = 1 and observed response variable is given by a model

where (1. (7)i;), with rhi = ajOi fi, is the probability that the respondent knows the item

and gives a correct response with probability one, and a probability (1 I (7) i3)) that
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the respondent does not know the item and guesses with 7 as the probability of a correct

response. The data are also augmented with latent data Zij which are independent and

normally distributed with mean and a standard deviation equal one. These variables

are related to W by Zij > 0 if Wij = 1 and Zij < 0 if Wij = 0. The aim of the procedure

is to simulate samples from the joint posterior distribution, p (a, 0, -y, 0, z, wly), where

the data Y are responses of n test simulees to k items. The procedure to calculate the

posterior distribution, consists of the following steps:

1. Draw from the posterior p (z, w I y; a, /3, y, 9) via the data augmentation model;
2. Draw from the conditional distribution of 9 given Z and a, 3 via a normal regression

model;
3. Draw from the conditional distribution of the parameters of item j, aj and i3 via a

normal regression model;
4. Draw from conditional distribution of 7i, which is a beta distribution when the conju-

gate Beta prior is used.

Convergence is evaluated by comparing the between and within sequence variance.

Bayes modal estimates obtained using a standard software package as BILOG-MG can

be used as starting points. The estimate Ei is taken as the average of the draws in Step 2.

So also in this case, the point estimate of 0 is an expected a posterior estimate. For more

information on this algorithm refer to Albert (1992) and Beguin and Glas (in press).

Person-Fit Statistics

Several person-fit statistics for investigating the goodness of fit of item score patterns

have been proposed. In this paper, we will use a number of statistics that have been

most often used in the literature (Meijer & Sijtsma, 2001). Glas and Meijer (2001) found

that these statistics had an acceptable type I error rate when simulating the distribution

for these statistics using an MCMC method. Type I error rate indicates the number of

incorrectly rejected null hypotheses based on the statistical tests. The following statistics

were used.

The W statistic (Wright and Stone, 1979) is defined by

9
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lc EW3=1 [Y P; (O

E3=1 P.7 (0) [1 (0)['
(3)

where the difference between the item score Y and the expected item score pi (8) is

weighted by the variance of the item score.

A related statistic was proposed by Smith (1985,1986) where the set of test items is

divided into S non-overlapping subtests denoted A3 (s = 1, S). Then the unweighted

between-sets fit statistics UB is defined as

2

1 S {E3EA, [Y3 P.7 (0)11
U B =

S 1 Ei". pi (8) [1 13; (0)]
(4)

The UB statistic is a weighted W statistic computed at the subtest level.

Two other statistics, (1 and (2, were proposed by Tatsuoka (1984). The (1 statistic is

the standardization with a mean of 0 and unit variance of

k

= E [Pi (0) Yil (ni , (5)
j=1

where ni denotes the number of correct answers to item j and ri denotes the mean number

of correctly answered items in the test. The index will be positive when easy items are

incorrectly answered and difficult items are correctly answered, and it will also be positive

if the number of correctly answered items deviates from the overall mean score of the

respondents. If a response pattern is misfitting in both senses, the magnitude of the index

will be largely positive. The (2 statistic is a standardization of

E [P; (8) (pi (0) k) ,

--=1

0

(6)
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where R is the person's number-correct score on the test. The index will be positive if

the response pattern is misfitting in the sense that easy items are incorrectly answered

and difficulty items are correctly answered; the overall response tendencies of the total

sample of persons is not important here.

Another well-known person-fit statistic is the log-likelihood statistic

I = E { Yi In Pi (9) + (1 Yi) ln [1 ,

=i
(7)

which was first proposed by Levin and Rubin (1979). It was further developed in

Drasgow, Levine, and Williams (1985), and Drasgow, Levine, and McLaughlin (1991).

Drasgow et al. (1985) proposed a standardized version 1, of 1 which is asymptotically

standard normally distributed; /z is defined as

=
1 E (1)

(Var (/))1/2'
(8)

where E (1) and V ar (1) denote the expectation and the variance of 1, respectively. The

person-fit statistic 1, is often used, but Molenaar and Hoijtink (1990), and Van Krimpen-

Stoop and Meijer (1999) showed that the distribution of 1, is negatively skewed. This

skewness influences the differences between nominal and empirical Type I error rates for

small Type I error values. They found that increasing the item discrimination resulted in a

distribution that was more negatively skewed. In an MCMC framework, the distribution

of a statistic is simulated, so its skewness is of minor importance. Therefore, we will only

consider the person-fit statistic 1 instead of 1z.

Evaluating the fit of an item score pattern.

To evaluate the fit of an item score pattern a norm distribution is needed for

classifying an item score pattern as fitting or misfitting. This norm distribution can

be obtained using a theoretical distribution (e.g., a normal distribution) or it can be

simulated. In this paper, we will simulate the norm distribution because often the
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theoretical distributions proposed in the literature are not in the agreement with the

empirical distributions (Meijer & Sijtsma, 2001). Also, the error in the item and person

parameters can be taken into account when we simulate the norm distribution. Recently,

Glas and Meijer (2001) used a Bayesian approach. Their approach has the advantage

that they take into account the uncertainty of the parameters in the IRT model. In this

Bayesian method, the posterior distribution of the parameters of the 3PNO model, say

p (e ly) where 6 are the item and person parameters in the model and y is the observed data,

is simulated using the MCMC method given above. Person fit is then evaluated using a

posterior predictive check based on an index T (y, e) where T refers to the person-fit

statistics given above. When the Markov chain has converged, draws from the posterior

distribution can be used to generate model-conform data y"P and to compute the Bayes

p-value defined by

Bayes p-value = Pr (T (yr , e) > T (y, 6) ly) . (9)

Thus, the Bayes p-value is defined as the probability that the replicated data are more

extreme than the observed data. Posterior predictive checks are performed by inserting

the person-fit statistics: 1, W, UB , (1, and (2 into equation (9). After the burn-in period,

when the Markov Chain has converged, in every n-th iteration (n > 1), using the current

draw of the item and person parameters, a person-fit statistic T (y, 6) is computed, a new

model conform response pattern is generated, and a value T (y"P , 6) is computed. Finally,

a Bayes p-value is computed as the proportion of iterations where T (y"P , 6) > T (y, 6).

Simulation Studies

The objective of these studies was to assess the probability of correctly classifying a

person according to his or her 0 value. A simulee wasclassified as a master if B > 0 and as

a non-master if 0 < 0. The cut-off score was chosen equal to zero. A classification error

arises when the sign of the generating value of 0 is not equal to the sign of the estimate.

12
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The reason for choosing a cut-off score equal to zero is to minimize the effect of the bias

of B. For example, when an EAP estimator is used to estimate 0, the estimate shrinks

towards the mean of 0, which is assumed to be equal to zero (Mislevy, 1986). Thus, the

bias is smallest at the mean of zero.

Model violations

Guessing

To investigate the robustness of the classification decision, random guessing was

simulated for a subset of the simulees in the data on part of the items on the test. For that

part of the test, these simulees were randomly responding with the probability of a correct

score equal to 0.20. Random response behavior may result from disinterestedness in the

test in situations where, for example, a test is used to evaluate educational achievement

without consequences for individual student. We simulated guessing on the easiest items,

because there the effect of guessing to the estimate of ability is most detrimental (Meijer

& Nering, 1997). Note that when guessing occurs only on the easy items, the actual score

will be lower than expected. This implies that the resulting ability estimate will also be

lower than the 'true' ability predicted by the model.

Item Disclosure

It is possible that a person has preknowledge of some of the items in the test, either

about the type of test questions or about the correct answers, for example, as a result

of repeated test taking. Item disclosure may result in a larger percentage of the correct

answers than expected.

Note, that in general it is unknown on which of the items and on how many items

a person has knowledge of the correct answers. Item preknowledge on a few items

will only have a minor effect on the number-correct score (Meijer & Nering, 1997).

Also, item preknowledge of the correct answers on the easiest items in the test will

only slightly improve the number-correct score. This suggests that preknowledge on the

items of median and high difficulty may have the most profound effect on the total score.

Therefore, in this paper, we will always assume that item disclosure will affect only the

13
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difficult items. For these items, simulees will get a correct score with a probability equal

to 0.80.

When item disclosure affects only the difficult items, the actual score will be higher

than expected. Thus, the effect of item preknowledge is the largest for persons with low

0 that answer many difficult items correctly. For these persons, the resulting o will be

higher than the 'true' 0 predicted by the model.

Simulation Methods

Data Generation

The item parameters were chosen as follows. The -y-parameter was fixed to 0.20 for

all items. Item difficulty and discrimination parameters were chosen as

for a test length k = 30, three values of the discrimination parameter, 0.5, 1.0, and 1.5,
were crossed with ten item difficulties Ni = 2.00 + 0.40(i 1), i = 1, ..., 10.
for a test length k = 60, three values of discrimination parameters, 0.5, 1.0, and 1.5,
were crossed with twenty item difficulties Ni = 2.00 + 0.20(i 1), i = 1, ..., 20.

The ability parameters were drawn from a standard normal distribution. Using these item

and ability parameters, data were generated, the parameters were both estimated using

BlELOG-MG followed by MILE and EAP and by the MCMC method. Then, the item score

patterns were classified as normal or aberrant using the person-fit statistics discussed

above. Because we were interested in the robustness of the classification decision of

an individual person under model violations, we computed the proportion of correctly

identified simulees 0 > 0 with 0 > 0 [i.e., P(O > 019 > 0)] and the proportion of

correctly identified simulees 0 < 0 with 0 < 0 [i.e., P(?) 0 I 0 < 0)].

Guessing

Two sample sizes were used n = 400 with 40 misfitting simulees, and n = 1000 with

100 misfitting simulees. Guessing was simulated on 1/6, 1/3, and 1/2 of the easy items

in the test. The probability of a correct response to these items was chosen to be 0.20.

For every condition, 100 replications were made with a nominal significance probability

of 0.05 for every person-fit statistic.

-L4
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To investigate the robustness of the classification decisions, we first determined the

proportion of correct mastery decisions in a group with only fitting item response patterns.

Then, we determined the proportion correct mastery decisions in a group with fitting and

misfitting simulees where the item parameters were estimated using both the fitting and

misfitting simulees. Finally, we determined the proportions of correct mastery decisions

in the groups of simulees classified as fitting and misfitting on the basis of a person-fit

statistic.

Item Disclosure

The setup of the simulation study for item disclosure was analogous to study for the

guessing. Data were generated for sample sizes of 71 = 400 and n = 1000 simulees,

and test lengths of k = 30 and k = 60 items. Item disclosure was simulated for 10% of

the simulees, and for these simulees, 1/6, 1/3, and 1/2 of the difficult items in the test

were affected. The probability of a correct response to these items was chosen to be 0.80.

Test statistics were computed in the same way as in the guessing study. Again, in every

condition, 100 replications were made with a nominal significance probability of 0.05 for

every person-fit statistic.

Again, the proportion of correct mastery decisions without the presence of misfitting

simulees was used as a base rate. Furthermore, we determined the proportion of

correct mastery decisions for fitting or misfitting simulees, and for fitting and non-fitting

simulees as identified using person fit statistics, respectively.

The MCMC procedure

For the MCMC procedure, a run length of 4000 iterations with a burn-in period of

1000 iterations was chosen (see Albert, 1992). That is, the first 1000 iterations were

discarded. In the remaining 3000 iterations, T (y"P, e) and T (y, e) were computed every

fifth iteration. So the posterior predictive checks were based on 600 draws. For the

statistics that use a partitioning of the items into subtests, the items were ordered according

to their item difficulty )3 and then two subtests of equal size were formed, one with the

difficult and one with the easy items.

1 5
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Results

Guessing

For a sample with all item score patterns fitting, the proportion of correct mastery

decisions for n = 400 and n = 1000 simulees with k = 30 and k = 60 items is given

in Table 1. We divided the simulees into two groups based on 9: groups with 0 0 and

> 0. Recall that in this setup, the proportion of correct mastery decisions is defined as

the conditional probability P(0 < 0 I 0 0) for 9 < 0 and defined as PO > 0 I 0 > 0)

for 0 > 0, respectively. For the example, in Table 1 for the combination n = 400 and

k = 30, the proportion of correct mastery decisions using the MCMC method is 0.89 for

0 0. This means that using the MCMC method 89% of the simulees have 0 estimates

less than or equal to zero in the group with 0 < 0.

Insert Table 1 about here

Comparing the proportions of correct mastery decisions in Table 1, it can be seen

that there are no main effects of mastery (0 < 0 versus 0 > 0), and estimation method.

Furthermore, the proportion of correct mastery decisions is little affected by the sample

size, that is, by the precision of the item parameter estimates. There is, however, a main

effect of test length, that is, all proportions for k = 30 are less than those for k = 60.

This result is as expected because using longer tests will result in a higher proportion of

correct mastery decisions for the normal simulees.

Insert Table 2 about here

Table 2 gives the proportions of correct mastery decisions for data sets with 10%

guessing simulees. The item parameters were estimated using the data of fitting

and misfitting simulees simultaneously. Comparing the proportion of correct mastery

decisions for n = 400 in the normal (non-aberrant) group with 0 0 and with 0 > 0

(Table 2, upper panel), the proportion of correct mastery decisions in the normal group

16
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with B > 0 is higher across all estimation methods for p = 1/6, p = 1/3, and p = 1/2,

than those in the normal group with 0 0. There is one exception for the MCMC method,

where for 0 > 0, the proportion is 0.71 and for 0 < 0 is 0.85. However, for the guessing

simulees, the proportion of correct mastery decisions in the group with 0 > 0 is always

smaller than in the group with 0 < 0 for p = 1/6, p = 1/3, and p = 1/2. In general, for

p = 1/2 the proportion of correct mastery decisions in the group 0 0 is almost equal to

one. This can be explained by noting that guessing is imposed on the easy items resulting

in lower 3 than true O.

For both test lengths, for k = 30 and k = 60, it can be seen that if p increases, the

proportion of correct mastery decisions decreases in the normal group with 0 < 0 and

it increases for the normal group with 0 > 0. In contrast, for the guessing simulees the

proportion of correct mastery decisions increases for 0 0 and it decreases for 0 > 0.

This is due to the fact that when p increases and guessing is imposed on easy items, given

a fixed score s, the probability to get a score higher than s decreases. Thus, when 0 > 0

it will result in a lower 3 which implies that the number of the guessing simulees that are

being misclassified increases as p increases.

The results across the different estimation methods for the normal simulees are

similar across test lengths and proportion of simulated guessing p. For guessing simulees

and 0 < 0 results are also comparable across estimation methods. However, for guessing

simulees and 0 > 0 and p = 1/3 and p = 1/2 the proportions correct classifications differ

substantially, with MCMC as the least effective estimation method. In the latter case, the

estimates of 0 are distorted to such a degree that the proportion of correct classifications

approaches zero.

Inspection of the results in the condition with n = 1000 (Table 2, lower panel) and

comparing these results with n = 400 (Table 2, upper panel) shows that the proportion of

correct mastery decisions is little affected by the smaller calibration sample.

Insert Tables 3 and 4 about here
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In realistic situations, it is unknown which respondents are aberrant. The objective

of the following simulation study is to assess whether the same precision for mastery

classifications can be attained when persons are classified as aberrant or non-aberrant

using person fit statistics. The results are given in Table 3 (k = 30, n = 400) and Table

4 (k = 60, n = 400). Comparing classification rates for both k = 30 and k = 60 with

the classification rates in Table 2, it can be concluded that the classification rates for the

normal simulees based on a priori knowledge (Thble 2) and based on the classification on

the basis of a person-fit statistic are similar. In the group of guessing simulees, it can be

seen that the proportion of correct mastery decisions using the person-fit statistics is less

than in Table 2 for 0 < 0, whereas it is generally higher for 0 > 0 across p, that is, the

extent to which the test is affected by guessing. This last result may be explained by noting

that the group of simulees classified as misfitting consists of both simulated guessing

simulees and normal simulees. Because the normal simulees have in general a higher 0

value than the guessing simulees, the presence of some normal simulees may increase

the average 61 value in the guessing group. Furthermore, for p = 1/6, the proportion of

correct mastery decisions is higher than those obtained for p = 1/3 and p = 1/2.

In Table 4, the results for k = 60 are depicted. In general, the proportion of correct

mastery decisions is higher for k = 60 than for k = 30. For n = 1000 (not tabulated),

analogous trends were found.

Item Disclosure

The proportion of correct mastery decisions for n = 400 with k = 30 and k = 60

based on a priori knowledge, that is, without using person-fit statistics, is given in Table

5 (upper panel) and n = 1000 (lower panel).

Insert Table 5 about here

Comparing the proportion of correct mastery decisions in the normal (non-aberrant)

group with 0 < 0 and with 0 > 0 for n = 400 (Table 5, upper panel), the proportion of

correct mastery decisions for 0 < 0 is a little higher than for 0 > 0 across all estimation
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methods and proportions of item disclosure. Comparing the results with Table 1, it can

be seen that the proportions are almost similar and that there is no effect of bias in the

item parameter estimates as a result of the presence of 10% aberrant simulees. For the

item disclosure simulees, the proportion of correct mastery decisions in the group with

0 0 is always smaller than in the group with 0 > 0. Because item disclosure will lead,

in general, to a higher 9 value, the proportion of correct mastery decisions for 0 0 is

reduced. In general, the proportion of correct mastery decisions in the group 0 > 0 is

almost equal to one.

Across the different p values, for k = 30 and k = 60, it can be seen that the proportion

of correct mastery decisions for 0 0 and for 9 > 0 are similar. In contrast, for the item

disclosure simulees, the proportion of correct mastery decisions decreases for 0 < 0 and

it increases for 0 > 0. This is due to the fact that when p increases and item disclosure is

imposed on difficult items, given a fixed score s, the probability to get a score higher than

s increases. Thus, when 0 0 it will result in a higher 9, which implies that the number

of the item disclosure simulees that are being misclassified increases as p increases.

With respect to the estimation methods, it can be seen that for normal simulees, there

are only small (inconsistent) differences. For item disclosure simulees and 0 > 0 results

are also comparable across estimation methods. However, for item disclosure simulees

and 9 c 0 and p = 1/3 and p = 1/2, the MCMC method performed better than the EAP

and MLE.

Inspection of the results in the condition with n = 1000 (Table 5, lower panel) and

comparing them to the results for 77, = 400 (Table 5, upper panel) shows again that the

proportion of correct mastery decisions is little affected by the smaller calibration sample.

Insert Tables 6 and 7 about here

In the Tables 6 and 7, the classification percentages using the person-fit statistics for

n = 400 and k = 30 (Table 6) and k = 60 (Table 7) are given. From Table 6 it is clear that

for normal simulees the different estimation methods result in almost the same percentages
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of correct classifications across the different p values for 0 0 and 0 > 0. Also, similar

percentages were found as in Table 5 where the normal simulees were identified based on

a priori knowledge. For the item disclosure simulees, proportion correct classifications

differ. Comparing the classification rates in Table 5 and Table 6 we note that in the group

of item disclosure simulees the proportion of correct mastery decisions using the person-

fit statistics is, in general, higher than in Table 5 for 0 < 0, whereas it is generally lower

for 0 > 0 across different p values. This last result may be explained by noting that the

group of simulees classified as misfitting consists of both simulated item disclosure and

normal simulees. Because the normal simulees have in general a lower 0 value than the

item disclosure simulees, the presence of some normal simulees may reduce the average

B value in the item disclosure group. No large differences were found across person-fit

statistics.

In Table 7, the results for k = 60 are given. In general, the proportion of correct

mastery decisions is higher for k = 60 than for k = 30. For n = 1000 (not tabulated) the

same trends were found and the classification percentages were similar' as in Table 6 and

Table 7.

Discussion

The effect of person misfit to an MT model on a mastery/non-mastery decision was

investigated and it was investigated whether using person-fit statistics can be helpful in

judging the acceptability of such a decision. Results showed the following.

(1) The effect of the presence of 10% misfitting simulees had little effect on the item

parameter estimates in the sense that the mastery classification of normal simulees was

little affected.

(2) The classification precision of aberrant simulees was greatly affected: the

precision for guessing simulees with 0 > 0 became virtually zero, especially when the

MCMC method was applied. For item disclosure simulees with 0 < 0, the effects were

less dramatic than for the guessing, although for p = 1/2 the classification rates were

substantially lower than in the case for normal simulees.
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(3) For simulees classified as normal by means of a person-fit statistic the

classification rates were comparable with the situation where there was a priori knowledge

about normal/aberrant behavior.

In general the effect of the type of estimation method and the type of person-fit

statistic was small, though the (2-statistic generally gave the best results. The MCMC

method seemed to result in greater classification precision in the case of item disclosure.

In the case of guessing, and in cases were relatively small numbers of items were

misfitting (p = 1/6 and p = 1/3), the EAP method performed better. However there

were no trends where one estimation method outperformed the other estimation methods.

The main conclusion is that the classification precision in the sub-sample identified

as normal. (non-aberrant) by a person fit statistic is comparable to the classification

precision that can be attained if aberrant and non-aberrant respondents were known in

advance. Classification precision for aberrant persons is erratic. This suggests that

further research might be done to methods for identifying a subset of items where an

aberrant person gives model-conforming responses and using this subset to estimate 0.

An additional research question will then be to what extent thus shortened test length

decreases the precision of the estimate of 0 and the ensuing classification precision.
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Table 1
The Proportion of Correct Mastery Decisions.

All Item Score Patterns Fitting.

Method
n = 400 n = 1000
0 <0 0 > 0 0<0 0 > 0

MCMC 0.89 0.89 0.90 0.90
k = 30 EAP 0.89 0.89 0.90 0.89

MLE 0.88 0.89 0.89 0.90
MCMC 0.93 0.93 0.93 0.93

k = 60 EAP 0.93 0.92 0.93 0.93
MLE 0.93 0.92 0.93 0.93
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